Frekvensrespons av det kjørende gjennomsnittsfiltret Frekvensresponsen til et LTI-system er DTFT av impulsresponsen. Impulsresponsen av et L-prøve-glidende gjennomsnitt er Siden det bevegelige gjennomsnittlige filteret er FIR, reduserer frekvensresponsen til den endelige summen Vi kan bruke den svært nyttige identiteten til å skrive frekvensresponsen som hvor vi har sluppet minus jomega. N 0 og M L minus 1. Vi kan være interessert i størrelsen på denne funksjonen for å avgjøre hvilke frekvenser som kommer gjennom filteret som ikke er overvåket og som er dempet. Nedenfor er et plott av størrelsen på denne funksjonen for L 4 (rød), 8 (grønn) og 16 (blå). Den horisontale aksen varierer fra null til pi radianer per prøve. Legg merke til at frekvensresponsen i alle tre tilfeller har en lowpass-karakteristikk. En konstant komponent (nullfrekvens) i inngangen passerer gjennom filteret uopprettholdt. Visse høyere frekvenser, som pi 2, elimineres helt av filteret. Men hvis hensikten var å designe et lavpassfilter, har vi ikke gjort det veldig bra. Noen av de høyere frekvensene dempes bare med en faktor på ca 110 (for 16 poeng glidende gjennomsnitt) eller 13 (for firepunkts glidende gjennomsnitt). Vi kan gjøre mye bedre enn det. Ovennevnte tegning ble opprettet av følgende Matlab-kode: omega 0: pi400: pi H4 (14) (1-exp (-iomega4)). (1-exp (-iomega)) H8 (18) iomega8)). (1-exp (-iomega)) H16 (116) (1-exp (-iomega16)) (1-exp (-iomega)) plot (omega, abs (H4) abs H16)) akse (0, pi, 0, 1) Opphavsretts kopi 2000- - Universitetet i California, Berkeley Jeg må designe et bevegelig gjennomsnittsfilter som har en avskjæringsfrekvens på 7,8 Hz. Jeg har brukt glidende gjennomsnittlige filtre før, men så vidt jeg er klar over, er den eneste parameteren som kan mates inn, antall poeng som skal gjennomsnittes. Hvordan kan dette forholde seg til en avskjæringsfrekvens Den inverse av 7,8 Hz er 130 ms, og jeg jobber med data som samples ved 1000 Hz. Betyr dette at jeg burde bruke et bevegelige gjennomsnittlig filtervinduestørrelse på 130 prøver, eller er det noe annet jeg savner her, spurte Jul 18 13 klokken 9:52 Det glidende gjennomsnittsfilteret er filteret som brukes i tidsdomene for å fjerne støyen er lagt til og også for utjevningsformålet, men hvis du bruker det samme bevegelige gjennomsnittsfilteret i frekvensområdet for frekvensseparasjon, vil ytelsen være verst. så i så fall bruk frekvensdomener filtre ndash user19373 Feb 3 16 at 5:53 Det glidende gjennomsnittsfilteret (noen ganger kjent som en boxcar filter) har en rektangulær impulsrespons: Eller, oppgitt annerledes: Husk at en diskret tidssystemfrekvensrespons er lik den diskrete tiden Fourier-transformasjonen av impulsresponsen, kan vi beregne det som følger: Det som var mest interessert i for ditt tilfelle er størrelsesresponsen til filteret, H (omega). Ved hjelp av et par enkle manipulasjoner kan vi få det på en enklere måte: Dette ser kanskje ikke ut til å være lettere å forstå. Men på grunn av Eulers identitet. husk det: Derfor kan vi skrive ovenstående som: Som jeg sa før, hva du virkelig bekymret for, er størrelsen på frekvensresponsen. Så, vi kan ta størrelsen på det ovennevnte for å forenkle det videre: Merk: Vi kan slippe de eksponentielle betingelsene ut fordi de ikke påvirker størrelsen på resultatet e 1 for alle verdier av omega. Siden xy xy for to todelige komplekse tall x og y, kan vi konkludere med at tilstedeværelsen av eksponentielle termer ikke påvirker den generelle størrelsesresponsen (i stedet påvirker de systemfasesponsen). Den resulterende funksjonen inne i størrelsesbeslagene er en form for Dirichlet-kjernen. Det kalles noen ganger en periodisk sinc-funksjon, fordi den ligner sinc-funksjonen noe i utseende, men er periodisk i stedet. Uansett, siden definisjonen av cutoff-frekvensen er noe underspecified (-3 dB punkt -6 dB poeng første sidelobe null), kan du bruke ovennevnte ligning for å løse alt du trenger. Spesifikt kan du gjøre følgende: Sett H (omega) til verdien som svarer til filterresponsen du vil ha ved cutoff-frekvensen. Sett omega lik til cutoff frekvensen. For å kartlegge en kontinuerlig tidsfrekvens til diskretidsdomenet, husk at omega 2pi frac, hvor fs er samplingsfrekvensen. Finn verdien av N som gir deg den beste avtalen mellom venstre og høyre side av ligningen. Det skal være lengden på det bevegelige gjennomsnittet. Hvis N er lengden på det bevegelige gjennomsnittet, er en omtrentlig avskjæringsfrekvens F (gyldig for N gt 2) i normalisert frekvens Fffs: Den inverse av denne er Denne formel er asymptotisk riktig for stor N og har om lag 2 feil for N2 og mindre enn 0,5 for N4. PS! Etter to år, her endelig hva var tilnærmingen fulgt. Resultatet ble basert på tilnærming av MA-amplitudespektret rundt f0 som en parabola (2. rekkefølge Serie) i henhold til MA (Omega) ca. 1 frac - frac Omega2 som kan gjøres mer nøyaktig nær nullkryssing av MA (Omega) - frac ved å multiplisere Omega med en koeffisient som oppnår MA (Omega) ca. 10.907523 (frac - frac) Omega2 Oppløsningen av MA (Omega) - frac 0 gir resultatene ovenfor, hvor 2pi F Omega. Alt ovenfor gjelder 3 dB cutoff frekvensen, emnet for dette innlegget. Noen ganger, selv om det er interessant å oppnå en dempingsprofil i stoppbånd som er sammenlignbar med en 1-ords IIR Low Pass Filter (single pole LPF) med en gitt -3dB cut-off frekvens (en slik LPF kalles også leaky integrator, å ha en stolpe ikke akkurat ved likestrøm men nær det). Faktisk har både MA og den første rekkefølgen IIR LPF -20dBdecade-skråningen i stoppbåndet (en trenger en større N enn den som brukes i figuren, N32, for å se dette), men mens MA har spektrale nuller ved FkN og en 1f evelope, har IIR filteret bare en 1f profil. Hvis man ønsker å skaffe et MA-filter med lignende støyfiltreringsegenskaper som dette IIR-filteret, og samsvarer med 3dB-kuttfrekvensene for å være det samme, ved å sammenligne de to spektrene, ville han innse at stoppbåndets rippel av MA-filteret ender opp 3dB under det av IIR-filteret. For å få det samme stoppbåndet ripple (dvs. samme støydempning) som IIR-filteret, kan formlene modifiseres som følger: Jeg fant tilbake Mathematica-skriptet der jeg beregnet kuttet av for flere filtre, inkludert MA-en. Resultatet ble basert på tilnærming av MA-spektret rundt f0 som en parabola ifølge MA (Omega) Sin (OmegaN2) Sin (Omega2) Omega 2piF MA (F) ca. N16F2 (N-N3) pi2. Og dermed krysse med 1sqrt derfra. ndash Massimo Jan 17 16 kl 2: 08 Eksponensielt filter Denne siden beskriver eksponensiell filtrering, det enkleste og mest populære filteret. Dette er en del av avsnittet Filtrering som er en del av En veiledning til feilsøking og diagnose. Oversikt, tidskonstant og analoge ekvivalenter Det enkleste filteret er eksponensielt filter. Den har bare en innstillingsparameter (annet enn prøveintervallet). Det krever lagring av bare én variabel - den forrige utgangen. Det er et IIR (autoregressivt) filter - virkningene av en inngangsendring forfall eksponentielt inntil grensene for skjermer eller dataregning skjuler det. I ulike discipliner benyttes også dette filteret som 8220exponential smoothing8221. I noen disipliner som investeringsanalyse kalles eksponentielt filter en 8220Exponentielt vektet bevegelig gjennomsnittlig8221 (EWMA), eller bare 8220Exponential Moving Average8221 (EMA). Dette misbruker den tradisjonelle ARMA 8220moving average8221 terminologien av tidsserieanalyse, siden det ikke er noen innloggingshistorikk som brukes - bare gjeldende inngang. Det er den diskrete tidsekvivalenten til 8220 første orden lag8221 som vanligvis brukes i analog modellering av kontinuerlig kontrollsystemer. I elektriske kretser er et RC-filter (filter med en motstand og en kondensator) en førsteordringsforsinkelse. Når man understreker analogien til analoge kretser, er single tuning parameteren 8220time constant8221, vanligvis skrevet som små bokstaver gresk bokstav Tau (). Faktisk stemmer verdiene på de diskrete prøvetidene nøyaktig overens med ekvivalent kontinuerlig tidsforsinkelse med samme tidskonstant. Forholdet mellom digital implementering og tidskonstanten er vist i ligningene under. Eksponentielle filterligninger og initialisering Det eksponensielle filteret er en vektet kombinasjon av det forrige estimatet (utgang) med de nyeste inntastingsdataene, med summen av vektene lik 1 slik at utgangen stemmer overens med inngangen ved steady state. Følgende filternotasjon er allerede innført: y (k) ay (k-1) (1-a) x (k) hvor x (k) er den råinngangen på tidspunktet trinn ky (k) er den filtrerte utgangen på tidspunktet trinn ka er en konstant mellom 0 og 1, vanligvis mellom 0,8 og 0,99. (a-1) eller a kalles noen ganger 8220smoothing constant8221. For systemer med et fast tidssteg T mellom prøver blir konstanten 8220a8221 beregnet og lagret for enkelhets skyld bare når applikasjonsutvikleren spesifiserer en ny verdi av ønsket tidskonstant. For systemer med datasampling i uregelmessige intervaller, må den eksponensielle funksjonen ovenfor brukes med hvert trinn, hvor T er tiden siden forrige prøve. Filterutgangen blir vanligvis initialisert for å matche den første inngangen. Når tidskonstanten nærmer seg 0, går a til null, så det er ingen filtrering 8211 utgangen er lik den nye inngangen. Som tidskonsentrasjonen blir veldig stor, en tilnærming 1, slik at ny inngang nesten ignoreres 8211 veldig tung filtrering. Filter-ligningen ovenfor kan omarrangeres til følgende prediktor-korrigerende ekvivalent: Dette skjemaet gjør det mer tydelig at variabelestimatet (utgang av filteret) er forutsatt som uendret fra forrige estimat y (k-1) pluss en korreksjonsperiode basert på den uventede 8220innovation8221 - forskjellen mellom den nye inngangen x (k) og prediksjonen y (k-1). Dette skjemaet er også et resultat av å avlede det eksponensielle filteret som et enkelt spesielt tilfelle av et Kalman-filter. som er den optimale løsningen på et estimeringsproblem med et bestemt sett av antagelser. Trinnrespons En måte å visualisere driften av eksponensielt filter på er å plotte sitt svar over tid til en trinninngang. Det vil si, med utgangspunkt i filterinngang og - utgang ved 0, endres inngangsverdien plutselig til 1. De resulterende verdiene er plottet under: I det ovennevnte tegnet deles tiden med filtertidskonstanten tau, slik at du lettere kan forutsi Resultatene for en hvilken som helst tidsperiode, for en hvilken som helst verdi av filtertidskonstanten. Etter en tid som er lik tidskonstanten, øker filterutgangen til 63,21 av den endelige verdien. Etter en tid lik 2 tidskonstanter, øker verdien til 86,47 av sin endelige verdi. Utgangene etter tidene lik 3,4 og 5 tidskonstanter er henholdsvis 95,02, 98,17 og 99,33 av sluttverdien. Siden filteret er lineært betyr dette at disse prosentene kan brukes til hvilken som helst størrelsesorden av trinnendringen, ikke bare for verdien av 1 som brukes her. Selv om trinnresponsen i teorien tar en uendelig tid, tenker det fra det praktiske synspunkt på det eksponensielle filteret som 98 til 99 8220done8221 som svarer etter en tid lik 4 til 5 filtertidskonstanter. Variasjoner på det eksponensielle filteret Det er en variasjon av det eksponensielle filteret som kalles et 8220 ikke-lineært eksponensielt filter8221 Weber, 1980. ment å sterkt filtrere støy innenfor en bestemt 8220typical8221 amplitude, men deretter reagere raskere på større endringer. Copyright 2010 - 2013, Greg Stanley Del denne siden:
No comments:
Post a Comment